High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis
نویسندگان
چکیده
Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملAccelerated radial diffusion spectrum imaging using a multi-echo stimulated echo diffusion sequence.
PURPOSE Diffusion spectrum imaging (DSI) provides us non-invasively and robustly with anatomical details of brain microstructure. To achieve sufficient angular resolution, DSI requires a large number of q-space samples, leading to long acquisition times. This need is mitigated here by combining the beneficial properties of Radial q-space sampling for DSI with a Multi-Echo Stimulated Echo Sequen...
متن کاملAn investigation into the effect of magnetic resonance imaging (MRI) echo time spacing and number of echoes on the sensitivity and dose resolution of PAGATUG polymer-gel dosimeter
Background: There are various methods to read out responses of a polymer-gel dosimeter, among which the Magnetic Resonance Imaging (MRI) technique is the most common one. Optimizing imaging protocols can have significant effect on the sensitivity and the dose resolution of polymer gel dosimeters. This study has investigated the effects of the number of echoes (NOE) and the echo time spacing (ES...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملProspective Motion Correction for T2- and Diffusion-Weighted Breast Imaging with FADE
Introduction T2and diffusion-weighted imaging are useful as non-contrast-enhanced MRI techniques; however both are limited by low-resolution and blurring [1,2]. The Fast Acquisition Double Echo (FADE) sequence is a 3D steady-state sequence with two echoes per TR; spoiler gradients that separate the echoes provide diffusion weighting. FADE enables high-resolution T2and diffusion-weighting imagin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 27 شماره
صفحات -
تاریخ انتشار 2014